Tag Archives: ik hull design

IK autopsy

Performing my cutting-a-kayak-in-half trick gave me a long overdue chance to see exactly how they’re put together, as well as other stuff, like why it was failing and how well certain glues stuck.

The neoprene inside
I used to assume it was the same coloured coating inside the boat as out; it’s just simpler. But of course the diagram right is clear: what’s hypalon fabricoutside and what’s inside an IK hull is not the same stuff. There’s no need to waste UV-resistant hypalon sempauto - 16coating (or colouring or that matter) inside the boat’s benighted chambers. All it needs to be is the same durable and airtight coating, and neoprene – the brown rubber-like coating left – does that fine.
I bet I’m not the only one to mistake ‘neoprene‘ as simply that closed-cell sponge used in wet-suits or laptop sleeves. In its solid form it’s a durable synthetic rubber, but I presume lacks the full-on UV resistance of hypalon which DuPont invented shortly after.

I-beam floor
As mentioned here, an inflated vessel will seek equilibrium by attaining a rotund form, be it tube or sphere. A flat inflated plane such as an airbed or an IK floor needs to be a series of parallel tubes – or just a non-inflated sheet, like packraft and white-water raft floors. It also works the other way with bed mattresses. The springs and foam must be constrained by straps or whatever to keep the spring mattress flat.
sempauto - 17So this is an IK I-beam floor (left): probably the same tough core of nylon or polyester scrim, but without the impermeable hypalon and neoprene coatings of the exterior panels.
Note the pre-folds or creases to help the Semperit pack flat. I imagine modern IKs do the same, but it all explains the necessary attention to detail which makes ‘tubeless’ IKs like this so labour intensive, compared to ‘bladder’ designs like Aire.

sempauto - 2Twin side-tube IKs like this Forelle, the Incept and Grabner Holidays, have two smaller tubes one on top of the other, rather than one fat side tube like my Seawave (left, red) or Amigo. It gives the same buoyancy, more freeboard (above water height), a slimmer profile (more speed) or make more volume inside (easier packing). The red Seawave on the left is 82cm wide; the Semperit is 72. It makes the boat look a whole lot better too and overall because it’s also no less stable, I’d say it’s the best design for an IK, but it also needs I-beam sections to constrain the two side tubes.
I can’t say I could suck air through the scrim easily, but I’m pretty sure it’s porous – I didn’t find any transfer holes to allow air to flow between adjacent tubes – they might be a weak point.
sempauto - 14When an IK like this is over-inflated (or left in the sun) and is unable to purge through PRVs (none on the Semperit), you imagine it’s this scrim which either tears apart, most probably at the T-join where it’s glued to the neoprene (left). I tried tearing sections of scrim by hand;  impossible where it was uncut, but as soon as you nick it with a knife it would tear quite easily. This fabric was at least 40-years-old and had one or two patches of mildew, but was still tough and the whole assembly of the boat has held together amazingly well over the years.

sempauto - 4Where mine failed
sempauto - 10Inspecting the fatal second leak alongside the earlier repair, it seemed air was pushing through where two sections of I-beam scrim butted against each other. Perhaps the old coatings stretched differentially here or were just worn out.  It did look like the hypalon was simply flaking away – as you’d expect after four decades.
I could have fixed that leak but, as mentioned, another would probably pop up somewhere else, quite possible while at sea in either my- or a new owner’s hands.

Glue test
sempauto - 3semp- - 6I repaired the big original ‘L’ tear with a 5″ round patch of hypalon and two-part glue (left). I then patched a down-to-the-scrim scratch under the hull with one-part Bostik 1782 (right). I used the same glue to repair the first new leak inside (bubbling above left).

sempauto - 11Although I’m pretty sure they’d have lasted, I could easily pull off the Bostik patches by hand. Pulling off the big round Polymarined patch was another matter. It just so happened I’d sawn through the round patch but, only once I got some pliers under a lip (left) was I able to separate it from the hull. As you can see in the big image below, either the ancient orange hypalon coating of the IK, or the newer red hypalon of the patch separated from their respective nylon cores – the glue’s bond was stronger than the actual hypalon coatings.
sempauto - 13I get a bit lazy about having to faff about with two-part glue, and I also wonder if I ever guestimating the 25:1 ratio (or whatever it is) correctly. But as you can see, this stuff sticks. If you absolutely, positively want it to stay stuck, use two-part ami-polyadhesives. I still don’t know if the second part curing agent merely speeds up the drying process, or is actually chemically integral to creating the very strong bond. I’d think it’s the latter, otherwise why bother.

There’s more about glues and repairs here.

semp-glue

semp-bowwowOther stuff
sempauto - 15Well, the distinctive marine plywood bow has lasted fine – no warping at all and the rivets still intact.
It may have been an early design solution to easily joining the three sections of the hull in a nice sharp point, though they managed that join easily enough at the back. Maybe it was as much for protection and a frontal tracking aid.
I now have enough hypalon patches and D-rings to see me out. Other images from the autopsy below.

 

 

 

Inflatable Kayak Construction Part 2: Hull Forms and Rigidity

Part 1: Materials and Fabrication
See also: Drop stitch IKs (or more below)

Updated Summer 2020

An inflatable kayak differs from a hardshell in many ways. An IK is usually wider and sits higher in the water because the sides and floor are effectively several inches thick, not a few millimetres as on a SinK (‘sit-in hardshell kayak’).

grabanana

While length-for-length an IK is usually lighter than a SinK, it’s rarely as rigid. On a short, rock-bashing, creek boat this can either be unnoticeable or even a slight advantage when it comes to impacts.

But here at IK&P we’re into long IKs of 3.6m (12 feet) or more. Years of experimentation have proved that this adds up to a do-it-all boat that’s manoeuvrable on rivers up to WW3 and fine for coast hopping up to Force 4. Such a boat can either carry a second paddler or a solo camping payload for a few days touring while rarely weighing more than 18kg or 40lbs and so can be carried over short distances.
Problem is, when an IK gets beyond a certain length it can sag in the middle with a single heavy paddler (me?!). As on my old Feathercraft Java (below), even with rocks piled in each end or my ‘uphill‘ Grabner, above left. There are various ways of making a long IK rigid, but first…

cons-2bots

Hull profiles
A hardshell sea kayak can have various hull profiles that, combined with other design elements defines the boat’s stability in various sea conditions. The picture on the left may be merely down to timing but illustrates how a very long SinK on the right runs more level than an IK bobbing about on rough water, partly because the hardshell is heavier and less buoyant, but also because – like a 29-inch MTB wheel – a long, slim kayak ‘flattens out the bumps’ better than a 26-er. Some sea kayaks with V-shaped hull profiles become more stable the rougher seas get but at the cost of stability in flat water.

slidercut
sai13
Left: Grabner Amigo – right Incept K40.

The flat and wide hull profile of a traditional IK is not so sophisticated, nor is the boxy (hard chined) profile of a full dropstitch (F D/S) IK (right). For better or worse, most IKs are as stable as a raft. The key is to find a balance between reassuring stability and performance-killing width. On an IK I find the optimum width is around 32–27″ (81–69cm). On rivers or at sea an IK hull is usually very stable until things get exceedingly rough. I’d guess that the two hulls pictured left (a red Grabner Amigo and an Incept K40), the less boxy red boat would take more leaning over (or steeper waves) before it suddenly tipped. However, it’s pretty obvious why the grey Incept was some 20% quicker through the water, as was my slender FC Java.
Note that the width of an Full D/S IK can be misleading as the flat sides taper in to the floor. Above right a Sea Eagle Razorlite listed in the table below as 76cm and which is fast, but some find a bit tippy.

The Incept was 3.5 inches narrower than the Amigo and has a more pointy bow (its stiff fabric and being 15% longer were also factors). And yet, this 27-inch (67cm) wide Incept could never be described as ‘tippy’ even in seas up to F5-6 (other problems did occur).
It all proves that an IK doesn’t have to be ridiculously wide (as left) to be stable. Many, many otherwise functional-looking IKs are up to a foot wider than the Incept. Even if you are extremely nervous about padding and stability, such width is excessive and makes paddling inefficient.

cons2pads

Stability and centre of gravity (CoG)
Having said all that, an IK needs to be a bit wider to compensate for the fact, that compared to a SinK or a packraft, you’re sat higher above the water on an air floor and probably on an inflatable seat too (graphic, left). This adds up to a higher centre of gravity which affects stability, just as a 4WD is top-heavy in turns or on slopes compared to a McLaren F1. Your butt is the axis on which you pivot when wobbling/capsizing and on a hardshell, a folder or a packraft you sit just an inch or two below the water level: lower CoG = better stability without resorting to width.

AESE

Then, when you factor in less common self-bailing IKs, with an even thicker floor to be above the general water level, again the boat becomes less stable unless it becomes wider. You can see how high the floor appears on the self-bailing AW StraightEdge on the left and the Feathercraft Java, below.

javabailer

Also, your physique/size can also produce an impression of instability in otherwise well-liked boats that most paddlers find fine. At my XL size, I found my old Gumotex Sunny’s 30″/76cm beam was more than enough and at 27″ my Incept was also fine. But the 28-inch Java (above) and even more so the as wide Mk1 Safari (a self-bailer) were a bit tippy. The graphic below shows a regular IK in calm water and then swamped in rough water (centre). Right is a self-bailer like the Java or StraightEdge which drains in the same rough conditions but requires a thicker floor and/or higher seat to keep you dry. Result: IKs like Java or Safari Mk1 get tippy (for some), or you sit in water (not ideal) or the IK becomes over-wide (also not ideal but the best compromise for white water).

ikbailers1
comeonibeam

IK floors: I-beam and drop stitch
Traditinal IK hulls had three chambers: two round side tubes and a flatter, wider floor composed of many interlinked tubes (left). And in case you’re wondering, an inflated floor is an important element in an IK’s buoyancy. Obviously, round sided tubes are easy to make and take on the required form on inflation. Providing it’s well made, modest over-inflating is OK as the round profile distributes pressure equally.

Steel-IBeam
javasection

The flatter, lilo-like floor is another matter. To make this section the floor is joined top to bottom with I-beam fabric dividers resembling the steel beam on the right. It’s said this is the most labour-intensive and expensive part of traditional IK fabrication and explains why easy, slip-in bladders are preferred by most manufacturers, as on the Java, left. It saves time, effort and cost. Without I-beams or other constraints, once inflated the floor would balloon into a useless rounded form.

sempauto - 8

But with I-beams too much pressure can pull the floor dividers apart. Result: the floor balloons, the hull becomes deformed and a repair is very complicated or expensive. This is why some IKs including better Aires, some Gumotexes, bigger Grabners and Incept Ks feature a pressure relief valve (PRV) in the I-beam floor. Even though this part of the boat is in the cooling water, it is vulnerable to damage from excessive pressures which can occur when an IK gets hot when left out of the water. Although it had four separate bladders as opposed to an I-beam floor, I learned this lesson the hard way when my day-old Feathercraft Java went Krakatoa on me one sunny day in Colorado.
Following that disaster, one thing I liked about my Incept K40 was it had PRVs on all three chambers. I no longer needed to be paranoid about exploding my £1500 boat by accidentally allowing it to overheat out of the water. I could leave it on a car roof or a beach all day and air would purge harmlessly via the PRVs at the price of being a bit limp once it all cooled down back on the water. A quick blast with the K-Pump was all that was needed. On my Seawave I added PRVs to the two side tubes to get the same benefits.

twinpointer

Other ways of making an IK hull stiff
Whether your IK is bladder (as left) or tubeless, one way to achieve a rigid hull is to use twin side beams; two thinner tubes stacked over each other as pictured left. There may not seem much in it, but two tubular sections resist longitudinal bending better than one big tube, and all with a negligible gain in weight. This design also has the advantage of making a slimmer boat compared to a fat, single side tube. Higher sides without width also keep out waves but do make more windage – the bane of IKs. Examples of twin side tube IKs include the Grabner Holidays, Incept Ks and the Sevylor above, the old Semperit Forelle (the original modern IK) and Gumotex Seakers. At the time, Gumotex weren’t able to make a 5-metrelong Seakers out of Nitrilon that was suitably rigid so the Seaker (below) used a Korean PVC-coated fabric called Mirasol, but ended up weighing a staggering 34kg – double the Incept.

backbone

A cruder method includes fitting metal frames or spars. Advanced Elements offer an optional Backbone (right) for some of their kayaks, though I’m still unsure whether this is as much to impart more of a ‘V’ into the otherwise flabby hull floor and so improve tracking and speed. A picture here, and a forum full of discussions somewhere here. As the picture right at the top of the page shows, the metal frames in the FC Java (see also green graphic above) didn’t keep that boat rigid, at least with my weight.

ner - 13

The newer Neris Smart IKs (left) use more substantial metalwork based on their folding kayaks. Using metal frames is a valid way of gaining stuffiness, but Incept, Grabner and now dropstitch have proved that you can design an IK without resorting to such measures. Just as I’ve found with the Java and Grabner’s alloy backrests, incorporating bend-prone metal bars with inflatables isn’t a good idea. If nothing else it makes damage-free transportation more of a gamble.

mod-bendloads

This sagging was always a problem on my 13-foot Sunny (left). While paddling in France one time I tried putting a 1-metre plank under the seat to reduce the mid-sag. It did seem to give me an extra inch or two of draught in the shallow river. Later, I tried a couple of straight branches jammed into the cavity between the floor and the side tubes.
My unscientific impression was that by levelling the boat out in the water the Sunny was indeed faster and more responsive. The fact that later on the river sticks popped out of their slots through some rapids suggested how much the 0.2 bar (3psi) Sunny flexed in rough water. Later I tried fitting some chopped-down cheapo paddles. Some form of attachment for the poles needed to be glued to the 3-inch wide flat section where the floor meets the side wall (more here). I got as far as this but then gave the Sunny away. Had I finished the job I’d have expected a little more response to the paddling stroke with a less flex in the waves.

superman
dsfabric

In the last few years drop stitch (D/S) panels have appeared on a newer IKs. This technology is derived from the popularity of inflatable iSuP boards (above) which clearly need more pressure than your average airbed or IK. Lord knows how they make it, but it’s a way of joining two sheets of coated fabric with countless loose nylon filaments, all the same length (left).

airkayaks

When the two sheets are sealed to make a chamber and then pumped up, the space yarn acts like multiple ‘I-beams’, distributing the tension over the entire surface area. Result: pressure can be up to 10 psi or nearly 0.7 bar’ – four times than a tubed IK, making the boat much more rigid. More on DS IKs here.

inflatoe

Incredibly, in the late 1950s Goodyear used a the same D/S technology to design an experimental inflatable aircraft, the Inflatoplane (above). A light and portable plane, not an inexpensive inflatable decoy as armies have used previously. It did actually fly but as a project was abandoned when a valid military use for ‘an aircraft that could be brought down by a well-aimed bow and arrow‘ couldn’t be found. Now there are IKs like the Kzone Slider below which are fully made from DS panels.

SLIDER

They are only just finding ways of making a D/S panel that’s anything other than flat as an ironing board, but they’re getting there – the Decathlon Strenfit X500 (below) currently leads the way. While full DS will make a kayak very rigid, the smooth, flat underside and basic, box profile may make handling in rougher water tricky. One side benefit of the I-beam floors on ‘tubeless’ IKs is the channels formed by the parallel tubes create a keel effect.

sea385skeg

On the Sea Eagle 385 they’ve incorporated a drop-stitch inflatable front keel (left) that looks rather exposed and prone to damage. You’d also assume this makes turning difficult, although with enough paddle cranking and some edging any IK can be turned easily enough.

Now they can manufacture DS panels which are more sophisticated than the slab-like platform shown below, mimicking the complex forms and curves of a molded hardshell kayak. It marks a big step forward in IK design. Currently the Gumotex Rush (part–D/S hybrid) and especially the Decathlon X500 have upped the game. More than just 3 planks making a paddling trough, Gumotex have managed to integrate D/S panels into the bow and stern, giving a more hydrodynamic form on the sides.
Drop-stitch is the future of IK design and I wouldn’t be surprised if it somehow moves towards packraft floors too. Longer boats like my Nomad S1 could benefit from the added support of a separate D/S floor.

splashmatter